%% Perfil simétrico clear all close all %% definição do problema U0 = 1; alpha = 5*pi/180; C = 1; N = 50; x = 0:1/N:1; % y = x*0; gammaex = @(x) 4*U0*alpha*(1-x)./sqrt(1-(1-2*x).^2); % Placa Plana % t = 0.01; R = (.5^2 + t^2)/2/t; y = -R + t + sqrt(R^2 - (x-0.5).^2); gammaex = 0;% arco Ciscunferencia t = 0.05; y = -4*t*x.*(x-1); gammaex = @(x) 2*U0*(2*alpha*(1-x)./sqrt(1-(1-2*x).^2) +4*t*sqrt(1-(1-2*x).^2)) xy1 = [x(1:end-1)' y(1:end-1)']; xy2 = [x(2:end)' y(2:end)']; figure plot(x,y,'o-') axisd equal xf= x; yf = y; %% Solução do sistema [gamma,xy0,xyc,c] = LumpedVortex(xy1,xy2,alpha,U0); figure plot(xy0(:,1),gamma,'o',xy0(:,1),gammaex(xy0(:,1)).*c,'-k') %% Plot do campo de velocidades % x = -1: 0.02:2; % y = -0.5:0.02:0.5; beta = 1.1; n1 = 30; eta = 0:1/(n1-1):1; H = 1; x1 = H*(beta+1 -(beta-1)*((beta+1)/(beta-1)).^(1-eta))... ./(((beta+1)/(beta-1)).^(1-eta)+1); n2 = floor(1/min(diff(x1))); x2 = 0:1/(n2-1):1; x = unique([-x1(end:-1:1) x2 x1+1]); y = unique([ -x1(end:-1:1) x1 ]); [x,y] = meshgrid(x,y); u = x*0; v = u; for i=1:numel(x) V = vort2D(xy0,[x(i) y(i)],gamma); u(i) = V(1)+U0*cos(alpha); v(i) = V(2)+U0*sin(alpha); end figure quiver(x,y,u,v); hold on plot(xy0(:,1),xy0(:,2),'o'); hold off axis equal figure hold on streamline(x,y,u,v,-ones(size(-1:0.1:1)),-1:0.1:1) plot(xy0(:,1),xy0(:,2),'o',xyc(:,1),xyc(:,2),'*'); hold off %% Plot do campo de pressão p = 1-(u.^2 + v.^2)/U0.^2; p(p<-3) = -3; figure hold on contourf(x,y,p,100) contour(x,y,p,100) plot(xf,yf,'k','LineWidth',2) hold off